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Depamnent of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4. 
Canada 

Received 13 February 1995 

Abstract A wavesplitting approach used elsewhere to solve a black-hole scattering problem is 
adapted to the formal solution of ~ i " y  self-adjoint wave equations in 1 + 1 dimensions and 
yields potentially useful results in this more general case. It is then shown that the self-adjoint 
wave equation being solved, and the non-selfadjoint linear wave equations satisfied by the 
one-way component waves, are naturally related to a pair of motions of the (1 + l)-dimensional 
Toda lattice that together comprise a motion of the Kac-van Moerbeke lattice. This provides a 
partial explanation for the peculiar fact that every motion of the Ka-van Moerbeke laitice can 
be viewed as two interpolated motions of the Toda lattice. 

1. Introduction 

In 1984 Torrence and Couch [lJ applied a novel wave-splitting method to the solution 
of a specific scattering problem in general relativity and calculated the transmission and 
reflection coefficients as a function of frequency for a spherical scalar wave incident on 
a black hole. The results were gratifying as the scheme proved to be equally effective 
at all frequencies. It was evident that the method should be applicable to a wider class 
of problems, and in this paper we apply our wave decomposition approach to solving a 
large class of linear wave equations. We first obtain formal series solutions of the entire 
class of linear self-adjoint wave equations in 1 + 1 dimensions; these series decompose in 
a natural way into one-way waves. Under some circumstances, including those holding in 
[l], these series can be shown to converge absolutely to rigorous solutions; however, our 
main result, which is of a more formal nature, is the establishment of a relationship between 
the wavesplitting method described here, and a well known but unintuitive fact concerning 
the motions of the two nonlinear dynamical lattices usually referred to in the literature as 
the Kac-van Moerbeke lattice (KVML) [2,3] and the Toda lattice (TL) [4] .  Loosely put, this 
fact is that every motion of a KVML is two interpolated TL motions. Whether our result helps 
to 'explain' this peculiarity about lattice motions is a matter of taste, but it establishes a 
connection between it and something intuitively appealing in another area of mathematical 
physics, i.e. scattering theory. 

The contents of the paper are organized as follows. In section 2 we define formal 
reflection series representations for two particular types of basic solutions of the class of 
self-adjoint wave equations. The series lead in a natural way to the splitting of each of 
these basic solutions into two one-way component waves that can be useful in formulating 
scattering problems, and to the identification of a pair of linear second-order wave equations, 
not self-adjoint, each satisfied by a distinct pair of these four component waves. In section 3 
we review the way in which the iterated application of the classical Laplace transformation 
[5] to a given linear wave equation in 1 + 1 dimensions produces a doubly infinite sequence 
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4610 W E  Couch and R J Torrence 

of equivalent linear wave equations, and the fact that the equations defining this equivalence 
relation are precisely those defining TL dynamics, as was pointed out in [6]. In section 4 
we review the definition of KvML dynamics and the way in which a motion of the KvML 
is related to two motions of the TL, including an anomaly in that relationship that is not 
emphasized elsewhere and has a bearing on our new results. In section 5 we show that under 
the bijection described in section 3 the equivalence class of wave equations containing the 
self-adjoint equation we wish to solve, and a second equivalence class containing both of the 
non-self-adjoint equations satisfied by the one-way component waves, are mapped into two 
n. motions that are related by a KvML motion in the way described in section 4. Most of the 
results in sections 3 and 4 are reviews of hown  facts, however, those in section 2 seem to be 
mainly new (and may be of practical value) and the result in section 5 is apparently entirely 
new and unexpected. In the conclusion we compare the wave decompositions obtained in 
section 2 with some of the earlier work on wave-splittings [7-91 and discuss some open 
problems suggested by our results in section 5. 

2. Wave splitting by reflection 

The general linear wave equation in 1 + 1 dimensions can be written in the form 

(a&& - j ) @  = 0 (2.1) 

by appropriate transformations on the dependent and independent variables, where k and j 
are given functions of characteristic coordinates U and U. If (2.1) is specialized to 

(a:,, - j ) @  = 0 (2.2) 

i.e. if we assume k(u, U) = 1, then we are dealing with the (1 + I)-dimensional case of the 
class of equations known in the mathematical literature asfonnnlly self-djoint equations. 
There is a simple and intuitively satisfying approach to the solution of (2.2) that is of interest 
in its own right and also leads to a natural linear decomposition of its solutions into one-way 
component waves. It is natural to regard a field that satisfies (2.2) as propagating along 
the characteristics of the equation, which are the lines of constant U and U respectively, but 
undergoing a process of partial reflection at every field point. As a result, one can hope 
that if one had, for example, characteristic data a(u) at past null infinity, i.e. at U = -m, 
the field at a general field point coordinatized by U ,  U would be the sum of 

du'b(u, u')a(u') lm du' f(u', U) lm du' b(u', u')a(u') ... 
a(u) lm 
where the first term represents incoming data that reached the field point from past null 
infinity without reflection, the second term represents that which reached there after one 
reflection, where the single integration s u m s  over all the events where that reflection might 
have occurred, the third term represents data which reached the field point after two 
reflections, and so on. Here the functions f (U.  U) and b e ,  U) that alternate in the integrands 
encode the strength of the local reflections that occur at each point. If we generalize the 
lower limits of the two types of integrals to be the labels of an arbitrary pair of intersecting 
characteristics we are led to conjecture that (2.2) might be satisfied, at least formally, by 
each of the two rejection series 

@ * ~ a ( ~ ) + ~ " d u ' b a + ~ ~ d u '  U, U,, f j " d u ' b a + . . .  41 (2.3) 
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and 

where a(u)  and r(u) are independent and arbitrary data functions. If we are permitted to 
rearrange these series it is clear that the sum of the terms of (2.3) containing an even number 
of integral signs, corresponding to data that has been reflected an even number of times, 
might reasonably be viewed as that portion of moving along characteristics defined by a 
constant U, while the sum of the terms with an odd number of integrals corresponds to that 
part moving along characteristics defined by a constant U, and vice verm for (2.4). This 
motivates us to write 

(2.5) R -  R E v + g R o d  @ -6 gA = gAw + gAOd 

where 

and where we have ceased writing the differentials for simplicity. It is these series, which 
Iendthemselves to a nice formulation of scattering problems, that were successfully applied 
in [I]. If we continue to take a relaxed anitude about interchanging limit processes it is 
easy to derive from (2.6) that 

augAw = f(u.  u ) + ~ ~ ~  a,gAod = b(u, u)gAeV (2.7) 

and 

augRod = f (u ,  u)P' a,gRev = b(u, U ) $ ~ O * .  (2.8) 

It follows in a few steps from (2.7) that 

auug A - -I@ . A 

and similarly from (2.8) that 

if and only if a, f ~+ f b  = j ( u ,  U) 

a,,4 '- - 14 ' ifandonlyifa,b+bf = j ( u , u )  

12.9) 

(2.10) 

so we have shown the following theorem. 
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Theorem 1. Equations (2.5) with the definitions (2.6) yield formal solutions of (2.2) if and 
only if the two functions f (u,  U) and b(u, U) satisfy the coupled first-order nonlinear partial 
differential cquations 

W E  Couch and R J Torrence 

a,f + f b =  j a,b+bf = j .  (2.11) 

It might appear that theorem 1 is of little use since we have merely replaced the task 
of solving one second-order partial differential equation by that of solving two coupled 
first-order ones, but this is not the case. If we are given any function ~ ( u ,  U) and define 

b (auZ)/n f = (a,Z)/n (2.12) 

it follows immediately that 

a;". = (a,f + f b ) ~  = (a,b + bf)n (2.13) 

and we have a second theorem. 

Theorem 2. The functions f ( u ,  U) and b(u, U) defined by (2.12) satisfy our basic equations 
(2.1 1) if and only if n ( u ,  U) is a particular solution of (2.2). 

when this result is combined with theorem 1 it can be seen that each particular solution 
of (2.2) yields an intuitively satisfying formal representation of the general solution, as well 
as a particular local break-up of that solution into the oneway waves given by (2.6). It is 
easy to see that there are choices o f f  (u. U) and b(u, U). a(u) and r(u), and uo and ug, for 
which (2.3) and (2.4) are not well-defined; however, as was illustrated in [I] there are also 
realistic cases where they converge to rigorous and useful solutions of (2.2). 

A pair of formulae that are essential in obtaining our result in section 5 follow 
immediately from (2.7) and (2.8), as the latter imply that 

a,-a,-b @ = o  (2.14) ( ;  ) 
where 4 can be either q4Aw or +Rod, and that 

(2.15) 

where can be either or +Rw. The fact that each of the one-way components used to 
construct +A and 4R satisfies one of the two non-self-adjoint linear wave equations (2.14) 
or (2.15) is interesting in its own right, and is central to the results in section 5. The logical 
relationship between the self-adjoint equation that we wish to solve, (2.2), and the pair of 
equations that govem the one-way waves, (2.14) and (2.15), is worth an explicit comment. 
On the one hand if we begin with (2.2), i.e. with j(u, U), we can generate an infinite set 
of pairs f and b, one pair for each particular solution of (2.2) and thus an infinte set of 
pairs of non-self-adjoint wave equations, (2.14) and (2.15), satisfied by the corresponding 
one-way waves. On the other hand if we start with f and 6, they generate a unique j ( u ,  U) 
through (2.11) and, thus, a unique equation (2.2) if and only if they satisfy the compatibility 
condition 

a,f = a,b. (2.16) 

In what follows we shall be exclusively interested in two special classes of wave equations: 
(i) the family of self-adjoint equations which are characterized by j(u, U) = 1, and (ii) 
those special non-self-adjoint equations (2.14) and (2.15) which have coefficients that satisfy 
(2.16). 
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3. The iterated Laplace transformation 

In this section we shall briefly review the iterated application of the classical Laplace 
transformation to linear wave equations in 1 + 1 dimensions. 0.k formulation will be 
based on earlier work by Kundt and N e w ”  [lo], but will include a notational innovation 
appropriate to the applications in this paper. We shall also emphasize two independent 
specializations of the basic equations that will be important to us later. 

Given the generic wave equation (2.1) we put jo = k ,  j l  = j ,  and $0 = $ so that (2.1) 
takes the form 

(3.1) (a,joau - j l ) $ o  = 0. 

If we inductively define a doubly infinite sequence { j k ) k , ,  by 

j k d j k  = j k h - 1  - a u [ ( & j k ) / j k 1  k E Z (3.2) 

j k + l @ k + l  = j k a d k  jk$k-1  = & ( j k @ k )  k E (3.3) 

and a second doubly infinite sequence { $ k ) k s Z  by the two first-order conditions 

then (3.3) alone imply 

(a,jkau - j k + l ) @ k  = 0 k E z (3.4) 

as the latter are obvious integrability conditions for the former, while it was shown in [lo] 
and [ll] that (3.4) imply (3.3) modulo (3.2). It can also be shown that each of the U-normal 
fonn equations in (3.4) has as its u-normal form equation 

(a!&% - &-l)@k = 0 k E 2 (3.5) 

where 

j k l k  = 1 @k = 1k@k (3.6) 

and the new coefficient functions satisfy an analogue of (3.2): 

lk-l/?-k = l k / l k + l  - a v [ ( a u i k ) / i k i  k E Z. (3.7) 

It should be emphasized that the u-normal form of the equation with coefficients j k ,  j k + l  

has as its u-normal form the equation with coefficients l k ,  &+I. It is clear that any wave 
equation in (3.4) or (3.5) is equivalent to every equation in (3.4) and (3.5) in the sense 
that a solution to any one equation generates a solution to every equation by differentiation, 
through (3.6) and (3.3). It is the first and second of (3.3) that are, by definition, the Laplace 
transfomations of (3.4) and (3.5). respectively. 

Let us turn now to the ostensibly unrelated matter of n. dynamics. Toda’s original 
work concerned a system with one independent variable, time t ,  and a set of dependent 
variables, { X k ) k &  that can be interpreted as the absolute displacements of exponentially 
interacting lattice sites. If we take the standard generalization of Toda’s original system 
where a second independent variable x has been added and we have transformed t and x 
to U and U according to 

t = u + u  x = u - - U  (3.8) 
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and where we choose to change to new dependent variables [ j&,, related to Toda's absolute 
displacements by 

W E  Couch and R J Torrence 

j k  E e x p y  k E Z (3.9) 

the equations defining TL dynamics are precisely (3.2), equations essential in defining 
the Laplace transformations of (3.4). We shall refer to this system as the absolute two- 
dimensional TL (A=) dynamical system. It immediately follows that there is a natural 
oneto-one and onto correspondence between the set of motions of the A"L, represented by 
the set of sequences { j k } k E z  that satisfy (3.2) and which we shall denote by 'P, and the set of 
sequences of wave equations of the form (3.1) that are Laplace transformation equivalent, 
i.e. their coefficients also satisfy (3.2), and which we shall denote by V .  We represent this 
bijection by 

T y : V + P  (3.10) 

which has been applied in r6.11-131 to obtain various useful results about Toda lattice 
motions and linear wave equations. 

Our concern in what follows will be with sequences of wave equations containing a 
self-adjoint equation of the form (2.2), and with sequences that turn out to contain both 
the non-self-adjoint equation (2.14) and the u-normal form of the non-self-adjoint equation 
(2.15). Since j (u ,  U) = 1, it is natural to reflect the special role of this coefficient in'the 
sequence by indexing it as jo, in which case (2.2) becomes 

(ad.  - j d @ o  = 0. (3.1 1) 

It follows from (3.1) and j o @ ,  U) = 1 that 

j - k  = l j j k  k E Z (3.12) 

which emphasizes the central place of j o  in the sequence. From the point of view of TL, 
motions (3.9) and (3.12) show that in terms of Toda's original variables a class of wave 
equations containing an explicitly self-adjoint equation corresponds under (3.10) to an anti- 
symmetrical TL motion with a fixed centle element (indexed by 0). On the other hand (2.14) 
has coefficients restricted by (2.16) which means that the sequence for this wave equation 
has a natural central pair of elements. In order that the indexing reflects this it is useful to 
depart from the usual practice and index the coefficients in this case with half-integers; this 
will prove desirable in other respects as well. Thus, we supplement equations (3.2)-(3.7) 
by a second, obviously equivalent, set of equations by replacing every index k by k + $. It 
will be sufficient for our purposes to explicitly display just the alternative form of (3.2): 

(3.13) 

In this notation (2.14) will become the equation 

with condition (2.16) taking the form 
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In the particular case where j i ( u ,  U )  = j i ( u  + U )  = j f ( t ) ,  and similarly for j - ; ( u ,  U), 
(3.15) is satisfied by taking j - ;  = l/j; and it follows from (3.13) that 

j - ( k + ; ,  = W k + ;  (3.16) 

mirroring the result (3.12) for self-adjoint equations. The central role of the pair of elements 
j ; ,  j - ;  holds even in the case where (3.16) does not. The n motions that satisfy (3.16) 
are, in terms of Toda’s original variables, antisymmetrical motions without a fixed central 
element, with -; and 4 indexing the central pair of elements. 

Two independent specializations of (3.2) and (3.13) will be of interest in what follows, 
and we give the appropriate formulae here for future reference. On the one hand if we 
define 

q k  E j k + f / j k - f  k e Z  (3.17) 

then taking the difference of two instances of (3.13) with adjacent indices gives 

88 [ ( a u q k ) / q k ]  = -4k+l + %k - 4k-I k E Z (3.18) 

while if we~define 

q k + i  E j k + l / j k  k E z (3.19) 

then doing the same with (3.2) results in 

[ a U q k + i / q k + i ]  = - q k + f  f %k+; - 4 k - i  k E Z. (3.20) 

We shall refer to (3.18) and (3.20) as defining the relative two-dimensional TL ( R m )  
dynamics since a ratio of j k ’ s  corresponds to a difference of xk’s under (3.9). The mixing 
of integer and half-integer indices in the definition of the 4k.S is appropriate as (3.12) implies 
that 

q - ( k + ; )  = qk+$  k E Z  . (3.21) 

while (3.16) implies that 

q - k  = q k  k E Z  (3.22) 

i.e. that a central element’for the j k ’ s  means a central pair for the qk+i’s,  and vice versa. 
It is clear that, in general, (3.18) is not equivalent to (3.13); however,’in the special case 
where (3.16) holds they are equivalent, as a howledge of the qk’s combined with (3.16) 
determines the jk+t:, and likewise (3.20) is equivalent to (3.2) if and only if (3.12) holds. 

j k ( u , u )  = j k ( u + u )  = j d t )  j k + + ( w )  = j k + ; ( u + u )  = j k + ; ( t )  k EZ (3.23) 

in which case (3.2) and (3.13) specialize to 

A different specialization follows if we assume that 

( j L / j k ) ’  = j d j k - 1  - j k + , / j k  k E Z (3.24) 
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and 
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(j’ I / jk+;S = jk+;fjk-; - jk+;/jk+$ k e Z  (3.25) 

since a, = a. = d/dt, and where the prime means differentiation with respect to t. We 
shall call (3.24) and (3.25) absolute one-dimensionnl TL (AOTL) dynamics. If one does both 
specializations the result is 

k+ 1 

( d / q k ) ’  = - q k + 1  + 2% - 0 - 1  k E (3.26) 

and 

(4;+;/%+$)’ = -e+; 4- %k+; -e-; k E Z (3.27) 

which are the relative one-dimensional TL (ROTL) dynamical systems. The known connection 
between the TL and K v m  dynamical systems to be discussed in the next section holds in the 
most special case corresponding to (3.26) and (3.27). and to either of the two generalizations 
(3.24) and (3.25), or (3.18) and (3.20), but not for the most general case (3.2) and (3.13). 
It is somewhat unexpected that the interpolation result for the relative one-dimensional 
lattices can be generalized to either the case of the absolute dynamics, or to the case of two- 
dimensional dynamics, but not to absolute two-dimensional dynamics. This is the anomaly 
in the relationship between the two types of lattice dynamics that was referred to in the 
introduction and it is even more surprising in the light of our results in section 5. 

If we restrict the domain of (3.10) to be Yo, the sequences of wave equations that include 
one that is self-adjoint, the range is restricted to A m  motions for which (3.12) holds, and 
if we represent these anti-symmetrical motions about a fixed centre element by PO we have 
the restricted bijection 

lo : vo + Po (3.28) 

while if we restrict the domain of (3.10) to be the sequences of wave equations including 
one which has coefficients that satisfy (3.15). which we call Vi .  which restricts the range 
to the family of motions with a central pair of elements, and represent these motions by Pi 
we have a restriction of (3.10) to 

Ti :vi + Pi. (3.29) 

It is the two restricted bijections that we apply later. 

4. Interpolating lattice motions 

In this section we shall review the defining equations of the K v m  and the connection 
between its motions and those of the TL. The system of first-order ordinary differential 
equations 

Z;+; = Zk+;(Zk+I - Z k )  2; = Z k ( z k - ;  -Zk+;) k E z (4.1) 

z k  e j k / jk .+  Z x + ;  E . i k++/ jk  k E z (4.2) 

is a common representation of K v m  dynamicals [2]. If we put 



Wave splitting and lattice dynamics 4617 

then differentiating z k ,  using both the equations in (4.1), and repeating the process yields 
(3.26), the integer indexed ROTL equations. If we follow the same route starting with zk++ 
the result is (3.27), the half-integer indexed ROTL equations. Thus, we shall refer to (4.1) as 
the rehive onedimensional KVML (ROKVML) dynamical system, to distinguish it from two 
related systems to be defined below, and have derived the result that each of the motions of 
the first-order ROKvML system is comprised of two interpolated motions of the second-order 
ROTL system. We now reverse, as far as possible, the process of specialization that we 
went through with the TL dynamics. The system of coupled first-order ordinary differential 
equations 

j ; h k  = - j k + + i j k  + j k 1 j k - i  j L + ; f j k + ;  = j k + l / j k + +  - j k + ; / j k  k E Z (4-3) 

which imply (4.1). also imply, as in the preceding calculation, that 

( j L / j k ) '  = j k I j k - 1  - j k + I / j k  k E z (4.4) 

and similarly that 

(.iL+iljk+$' = .ik+iih-+ - .ik+$k+i k E Z  (4.5) 

which are the ~ 0 %  equations. Hence, (4.3) will be referred to as the absolute one- 
dimensional KvML ( A O K V ~ )  dynamical system, and the interpolation result just obtained 
for the relative one-dimensional systems has generalized to the absolute onedimensional 
case. If we postulate instead that Zk depend on both U and U and satisfy 

&Zk+f. = zk++ (Zk+1 - Zk)  a d k  Zk(Zk-f - z k + ; )  k E Z (4.6) 

(4.6) is obviously a generalization of (4.1), and if we write 

q k + t  = z k + l z k + t  q k  = Zk+;Zk k E z 
which follow from (3.17), (3.19) and (4.2), it follows that 

(4.7) 

a. (auqkiqk) = a, (av~k+l / zK+l)  + av(auz,+;/z,+;) 

= -a.(Zk+t - Z k - $  + a.(zk+i - Z k )  k E (4.8) 

= -qk+1 + %k - @-I 

where four terms have cancelled in pairs, while similarly 

a @ ( a V q k + i / q k + $ )  = -qk+$ -k &k+$ - q k - f  k E z. (4.9) 

But (4.8) is precisely (3.18), while (4.9) is precisely (3.20), so we can view the set { q k ) k e z  

as being constucted out of two interpolated motions of the half-integer indexed m, and 
similarly for the set {qk+; }keZ .  with reference to the integer indexed R m .  Since it is the 
relative TL equations that arise we shall designate (4.6) to be the relative two-dimensional 
KVML (RTK~~IL) dynamical equations. This system has been studied before, for example in 
[31. 

One naturally expects that to complete the picture there should exist a first-order system 
of coupled partial differential equations to be called the absolute two-dimensional KvML 
dynamical system, which has motions that comprise two interpolated motions of the second- 
order A"L dynamics, but we are unaware of any set of equations that play this role. In 
particular, if we replace the primes in (4.3) by a U derivative in one equation and a U 
derivative in the other the calculation fails to generalize in the required way. 
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5. Wave splitting and the KvML 

We return to the wave splitting formulae derived in section 2 and begin with the self-adjoint 
wave equation that we are solving in u-normal form: 

W E  Couch and R J Torrence 

(a,joa. - jl)h = o (5.1) 

j o = 1  j , = j  @o=@. (5.2) 

with 

Turning to the pair of non-self-adjoint equations satisfied by the one-way component waves, 
we first take equation (2.15), which is satisfied by both and @Rev, and identify it with 
the u-normal form equation 

(a,i;a, - ~ p ,  1 = o 

I / b  = l i  f =l-i @; = @. (5.4) 

(wp. - j;)@+ (5.5) 

(5.3) 

by putting 

The u-normal form of (5.3) is 

as was discussed in section 3, and one application of the Laplace transformation, defined 
by (3.2) and (3.7). to (5.5) yields the equation 

(&j-;a, - jd+-; = 0. (5.6) 

But according to (3.6) and (5.4) 

j-4 = 1 / 1 - ~  = l/f ji = l/l; = b (5.7) 

so (5.6) becomes (2.14), the non-self-adjoint equation for +*'" and @Rod. Thus we have 
established that the two pairs of one-way component waves satisfy a pair of non-self-adjoint 
wave equations that are equivalent under a Laplace transformation (and a change of normal 
form). There was no a priori reason to expect that these different equations should be so 
simply related, and this result endows the wave splitting introduced in section 2 with a 
certain formal attractiveness. Since the Laplace transformation was seen in section 4 to be 
intimately related to TL dynamics, it is natural to look for some further connection between 
the wave splitting and lattice dynamics and the interpolation result of section 4 is an obvious 
candidate. 

If we now interpolate the coefficients of the equivalence class of equations containing 
(5.6). which include (5.7), with the coefficients of the equivalence class of equations 
containing, (5.1), which include (5.2), we obtain the sequence (jk}ZEz which has the five 
central elements 

. . . , l/j, l/f, 1,b, j ._... (5.8) 
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with the rest of the sequence generated by these elements. We are interested in (5.8) as a 
possible KvML motion, as it is an interpolation of two TL motions, but the latter are ATTL 
motions and we have no candidate for ATKvML dynamics. However, if we take the ratios 
of successive elements of (5.8) to form the sequence 

. . . j l f .  f I L b l L  j l b ,  . . .. (5.9) 

and identify this with' the sequence 

, . . , Z - I , Z O ,  Z L , Z I , .  . . (5.10) 

then the two equations of (4.6), the RTKvML, indexed by k = 0 

a.zo = z ~ ( z - ~  - zi)  a+ = z t ( z l  - z0) (5.11) 

become 

& f  = f ( j l f  - 611) aub = b(jlb - fll) (5.12) 

which are precisely our basic equations (2.11). Each additional equation in (4.6) indexed 
by a value of k different from zero includes a new ZK. so each additional equation is 
automatically satisfied. Thus, we see that under the maps 27, and 4 the classes of 
equations containing (5.1) and (5.5) map, respectively, to elements of Q and "1 that 
are the interpolants 0f.a RTKVML motion. 

If instead we assume that the coefficient j in the wave equation (5.1) satisfies 
j ( u ,  U) = j ( t ) ,  and assume that b(u, U) = f ( u ,  U) = g(t), the basic equations for the 
splitting functions, (2.1 I), become the same equation, i.e. 

d i g  + g = j ( t ) / g  .~ (5.14) 

and the sequence (5.8) specializes to 

. .. , I l j ,  l lg ,  1, g, j ,  . . . . (5.15) 

If we identify (5.15) with 

(5.16) 

it is easy to confirm that the k = 0 instances of (4.3) ate satisfied. Thus, the sequence (5.15) 
is an AOKVML motion as all the other equations in that system are identically satisfied by 
defining the remaining elements of the sequence. Of course, the double specialization to a 
strictly t dependent sequence (5.9) leads to RTKvML motions. 

Naturally, one would like to show that the original sequence (5.Q where the elements 
depend on U and U in a more general way, is a solution of a system that would be called 
the absolute two-dimensional KvML system; however, the sequence (5.8) does not satisfy 
any pair of coupled first-order partial differential equations that could be put forward as a 
candidate for the role, nor, as was mentioned above, is there any possibility suggested by 
lattice dynamics. 

. .  
, . . , j-1, j - l . 1 ,  J $ ,  J I ,  . . . P 
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6. Conclusion 

The wave-decomposition results derived in section 2 have something in common with 
equations given by Bruckstein and Kailath [7]. If we specialize (2.2) by assuming that 
j ( u ,  U) = j ( u  +U) = j ( t ) ,  then we can satisfy (2.11) by assuming that b = f = g(t). with 
g a solution of (5.14). This equation and its role in splitting solutions of (2.2) in the special 
case where j ( u ,  U) depends exclusively on t are discussed at the beginning of their paper, 
however, none of the series (2.3), (2.4) and (2.6), nor the non-self-adjoint equations (2.14) 
and (2.15) appear in their work. 

A thoroughly investigated class of frequency domain wave splittings for the wave 
equation (2.2) with j ( u ,  U) = j ( x )  originated with Bremmer [8,9], and can be compared 
with the splittings introduced here. The Bremmer-type series solutions, and splittings, result 
from the approximation of the inhomogeneous medium through which the wave is travelling 
by layers within each of which the wave equation can be exactly solved. After taking into 
account all transmissions and reflections at the interfaces between the approximating layers, 
the layer thicknesses are allowed to go to zero, and interesting infinite series solutions and 
local wave splittings are obtained. Despite the similarity in the two approaches the series 
which result from that layering approach are not the same as those we obtain by building in 
continuous reflection from the start. To begin with there are an infinite variety of Bremmer- 
type splittings for each wave equation because there are an infinite variety of media in which 
the wave equation has a general solution that propagates without scattering [6]; this variety 
of splittings is in no way constrained by the particular wave equation one is trying to solve. 
There are also an infinite variety of splittings for each wave equation with our approach; 
however, they are indexed by the variety of particular solutions of that equation and so are 
peculiar to it. Of course, the non-uniqueness of both classes of splittings argues strongly 
against the possibility that in either case local physical significance can be attributed to 
the decomposition of wave phenomena into two one-way flows. More significantly, from 
our point of view, the one-way waves resulting from the Bremmer approach do not seem 
to satisfy any simple wave equations, precluding any result for those component waves 
comparable to that derived for o w  in section 5. 

There are open questions prompted by the formal result obtained in section 5. In [ll] 
the connection between linear wave equations and n. motions described in section 3 was 
generalized to one between systems of linear wave equations and non-Abelian TL motions. 
The results of the last section may extend to this wider context. It is also puzzling that while 
the wave decomposition results of section 2 apply to arbitrary self-adjoint wave equations, 
i.e. to arbitrary sequences of jk’s with j - ,  = l/jk, only after either assuming that the the j k ’ s  
are strictly t-dependent, or after going to the sequence of qk’s, i.e. to relative displacements 
in lattice terms, a n  we relate the wave decompositions to KvML lattice dynamics. There 
is a natural role in the scheme of things for a two-dimensional KvML dynamics of absolute 
displacements, but no candidate to fill it. 
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